数据库是存储在一起的相关数据的集合,这些数据是结构化的,无有害的或不必要的冗余,并为多种应用服务。本文分类介绍了模糊数据库、统计数据库、网状数据库及演绎数据库的定义。
模糊数据库
指能够处理模糊数据的数据库。一般的数据库都是以二直逻辑和精确的数据工具为基础的,不能表示许多模糊不清的事情。随着模糊数学理论体系的建立,人们可以用数量来描述模糊事件并能进行模糊运算。这样就可以把不完全性、不确定性、模糊性引入数据库系统中,从而形成模糊数库。模糊数据库研究主要有两方面,首先是如何在数据库中存放模糊数据;其次是定义各种运算建立模糊数据上的函数。模糊数的表示主要有模糊区间数、模糊中心数、模糊集合数和隶属函数等。
统计数据库
管理统计数据的数据库系统。这类数据库包含有大量的数据记录,但其目的是向用户提供各种统计汇总信息,而不是提供单个记录的信息。
网状数据库
处理以记录类型为结点的网状数据模型的数据库。处理方法是将网状结构分解成若干棵二级树结构,称为系。系类型是二个或二个以上的记录类型之间联系的一种描述。在一个系类型中,有一个记录类型处于主导地位,称为系主记录类 型,其它称为成员记录类型。系主和成员之间的联系是一对多的联系。网状数据库的代表是DBTG系统。1969年美国的 CODASYL组织提出了一份“DBTG报告”,以后,根据DBTG报告实现的系统一般称 为DBTG系统。现有的网状数据库系统大都是采用DBTG方案的。DBTG系统是典型的三级结构体系:子模式、模式、存储模式。相应的数据定义语言分别称为子模式定义语言SSDDL,模式定义语言SDDL,设备介质控制语言DMCL。另外还有数据操纵语言DML。
演绎数据库
是指具有演绎推理能力的数据库。一般地,它用一个数据库管理系统和一个规则管理系统来实现。将推理用的事实数据存放在数据库中,称为外延数据库;用逻辑规则定义要导出的事实,称为内涵数据库。主要研究内容为,如何有效地计算逻辑规则推理。具体为:递归查询的优化、规则的一致性维护等。
通过上文的学习,相信现在大家对数据库一些名词已经有所了解,这里只是为大家作了大体概念上的介绍,要想更深入了解数据库还需要更多的学习,上文中的内容比较适合初学者来学习,从这里开始打好数据库的坚实基础。